0=-4(4t^2-8t-2)

Simple and best practice solution for 0=-4(4t^2-8t-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-4(4t^2-8t-2) equation:



0=-4(4t^2-8t-2)
We move all terms to the left:
0-(-4(4t^2-8t-2))=0
We add all the numbers together, and all the variables
-(-4(4t^2-8t-2))=0
We calculate terms in parentheses: -(-4(4t^2-8t-2)), so:
-4(4t^2-8t-2)
We multiply parentheses
-16t^2+32t+8
Back to the equation:
-(-16t^2+32t+8)
We get rid of parentheses
16t^2-32t-8=0
a = 16; b = -32; c = -8;
Δ = b2-4ac
Δ = -322-4·16·(-8)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-16\sqrt{6}}{2*16}=\frac{32-16\sqrt{6}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+16\sqrt{6}}{2*16}=\frac{32+16\sqrt{6}}{32} $

See similar equations:

| 2x(x-4)+3(5-3x)=4 | | 1/4=x/28 | | (-5x)+90=65 | | x+2x+°+20°=180° | | x+4=3(2-x)=1 | | (g•g)+19=68 | | C/F=9/5c+32 | | x=5^2.5 | | 6x+4+19=10x-9 | | 2x^+10x=0 | | 7x-1=3x+ | | 10x+3(7x-9)=9(11x-3) | | (10x+38)=180 | | |3n−8|+5=−20 | | 5(n+10)+2(11n-10)=-5n+2n | | 0=y2-10y+21 | | 6x^-9x=0 | | 10x+38=21 | | -6(5x+1)-7x=-4x-39 | | 5a|2=10 | | 36=q^2 | | 98=6a | | 8+x-1=2x-5 | | (2x+3)+(3x+47)=180 | | 2x+8=51 | | |m+3|=16 | | -5(x+2)-1=-26 | | X+1/7y=4 | | Y+7x=9x=-1,0,2 | | 6-(p+4)=-4(p+4) | | x+20+4x=6x+17 | | 6n+18=6n-4 |

Equations solver categories